Power Quality Pv Grid Analysis

This book covers applied research on smart energy systems, smart grids, smart energy homes, smart energy products and services, and the advanced applications thereof, in the context of demand response and grid interactions. In particular, this book is focused on interdisciplinary research results that combine technical, social, environmental, and economic aspects of smart energy systems and smart energy products. Moreover, several chapters are based on the evaluation of real life cases, energy pilots, prototypes of smart energy products, and end user surveys and interviews.

The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is inverted to the AC voltage form by the inverter circuit. Packed with real-life scenarios and case studies from around the globe, Distributed Photovoltaic Grid Transformers covers the key design, operation, and maintenance aspects of transformers suitable for solar energy. Topics include islanding, voltage flicker, voltage operating range, frequency and power factor variation, and waveform distortion. Multiple homework questions are featured in each chapter. A solutions manual and downloadable content, such as illustrated examples, are available with qualifying course adoption.

A practical and systematic elaboration on the analysis, design and control of grid integrated and standalone distributed photovoltaic (PV) generation systems, with Matlab and Simulink models. Analyses control of distribution networks with high penetration of PV systems and standalone microgrids with PV systems. Covers in detail PV accommodation techniques including energy storage, demand side management and PV output power regulation. Features examples of real projects/systems given in OPENDSS codes and/or Matlab and Simulink models. Provides a concise summary of up-to-date research around the world in distributed PV systems.

Distributed Energy Resources in Microgrids: Integration, Challenges and Optimization unifies classically unconnected aspects of microgrids by considering them alongside economic analysis and stability testing. In addition, the book presents well-founded mathematical analyses on how to technically and economically optimize microgrids via distributed energy resource integration. Researchers and engineers in the power and energy sector will find this information useful for combined scientific and economical approaches to microgrid integration. Specific sections cover microgrid performance, including key technical elements, such as control design, stability analysis, power quality, reliability and resiliency in microgrid operation. Addresses the challenges related to the integration of renewable energy resources. Includes examples of control algorithms adopted during integration. Presents detailed methods of optimization to enhance successful integration.

This book comprises select proceedings of the International Conference on Smart Technologies for Energy, Environment, and Sustainable Development (ICSTEEESD 2018). The chapters are broadly divided into three focus areas, viz. energy, environment, and sustainable development, and discusses the relevance and applications of smart technologies in these fields. A wide variety of topics such as renewable energy, energy conservation and management, energy policy and planning, environmental management, marine environment, green building, smart cities, smart transportation are covered in this book. Researchers and professionals from varied engineering backgrounds contribute.
chapters with an aim to provide economically viable solutions to sustainable development challenges. The book will prove useful for academics, professionals, and policy makers interested in sustainable development.

Power Quality in Modern Power Systems presents an overview of power quality problems in electrical power systems, for identifying pitfalls and applying the fundamental concepts for tackling and maintaining the electrical power quality standards in power systems. It covers the recent trends and emerging topics of power quality in large scale renewable energy integration, electric vehicle charging stations, voltage control in active distribution network and solutions to integrate large scale renewable energy into the electric grid with several case studies and real-time examples for power quality assessments and mitigations measures. This book will be a practical guide for graduate and post graduate students of electrical engineering, engineering professionals, researchers and consultants working in the area of power quality. Explains the power quality characteristics through suitable real time measurements and simulation examples. Explanations for harmonics with various real time measurements are included. Simulation of various power quality events using PSCAD and MATLAB software PQ disturbance detection and classification through advanced signal processing and machine learning tools. Overview about power quality problems associated with renewable energy integration, electric vehicle supply equipment’s, residential systems using several case studies.

Document from the year 2019 in the subject Energy Sciences, I. K. Gujral Punjab Technical University, course: Electrical Engineering, language: English, abstract: India’s plan to ramp up solar power generation to 100 GW by 2022 is among the largest in the world. It aims to bring sustainable, clean, climate-friendly electricity to millions of India’s people. The World Bank Group is moving to help India deliver on its unprecedented plans to scale up solar energy from installing solar panels on rooftops to setting up massive solar parks. This will catapult India to the forefront of the global effort to bring electricity to all, mitigate the effects of climate change, and set the country on a path to become the India of the future. Solar power in India is a fast-developing industry, with a cumulative installed grid connected solar power capacity of 26,025.97 MW (26 GW) as of 31st December 2019. The Indian government has significantly expanded its solar plans, targeting 100 billion US dollar of investment and 100 GW of solar capacity (including 40 GW from rooftop solar) by 2022. This book presents the status of renewable energy and solar PV technology at the beginning. A solar Photovoltaic (PV) cell converts solar radiation into electric energy with the help of a diode, two resistances and connected load. In order to harness the maximum power, Maximum Power Point Tracking (MPPT) technique is used which is able to generate the power at Maximum Power point (MPP). The importance of two custom power devices namely, Distributed Static Compensator (D-STATCOM) and Unified Power Quality Conditioner (UPQC) is highlighted with its impact on Power Quality (PQ) especially considering various PQ issues. In this book, the impact of three-phase fault at unity power on the performance of solar PV grid tied system is highlighted. The PQ system performance has been evaluated under the influence of three-phase fault and waveforms are studied. The effect of fault has been discussed at Point of Common Coupling (PCC) and Total Harmonic Distortion (THD) analysis has been done using the Fast Fourier Transform (FFT) tool of Matlab software. Finally, the THD at the various points of PCC are calculated and discussed at fundamental frequency. Finally, the role of D-STATCOM and UPQC in improving the PQ aspects for a solar PV grid tied system at unity power factor. Sag has been reduced in the current waveforms obtained at PCC whereas the THD levels have been reduced for utility grid side (i.e. the point where the fault has been introduced).

Photovoltaics, the direct conversion of light from the sun into electricity, is an increasingly important means of distributed power generation. The SPICE modelling tool is typically used in the development of electrical and electronic circuits. When applied to the modelling of PV systems it provides a means of understanding and evaluating the performance of solar cells and systems. The majority of books currently on
the market are based around discussion of the solar cell as semiconductor devices rather than as a system to be modelled and applied to real-world problems. Castaner and Silvestre provide a comprehensive treatment of PV system technology analysis. Using SPICE, the tool of choice for circuits and electronics designers, this book highlights the increasing importance of modelling techniques in the quantitative analysis of PV systems. This unique treatment presents both students and professional engineers, with the means to understand, evaluate and develop their own PV modules and systems. * Provides a unique, self-contained, guide to the modelling and design of PV systems * Presents a practical, application oriented approach to PV technology, something that is missing from the current literature * Uses the widely known SPICE circuit-modelling tool to analyse and simulate the performance of PV modules for the first time * Written by respected and well-known academics in the field

This volume contains the peer-reviewed proceedings of the International Conference on Modelling and Simulation (MS-17), held in Kolkata, India, 4th-5th November 2017, organized by the Association for the Advancement of Modelling and Simulation Techniques in Enterprises (AMSE, France) in association with the Institution of Engineering Technology (IET, UK), Kolkata Network. The contributions contained here showcase some recent advances in modelling and simulation across various aspects of science and technology. This book brings together articles describing applications of modelling and simulation techniques in fields as diverse as physics, mathematics, electrical engineering, industrial electronics, control, automation, power systems, energy and robotics. It includes a special section on mechanical, fuzzy, optical and opto-electronic control of oscillations. It provides a snapshot of the state of the art in modelling and simulation methods and their applications, and will be of interest to researchers and engineering professionals from industry, academia and research organizations.

This book constitutes the refereed proceedings of the Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2011, held in Costa de Caparica, Portugal, in February 2011. The 67 revised full papers were carefully selected from numerous submissions. They cover a wide spectrum of topics ranging from collaborative enterprise networks to microelectronics. The papers are organized in topical sections on collaborative networks, service-oriented systems, computational intelligence, robotic systems, Petri nets, sensorial and perceptual systems, sensorial systems and decision, signal processing, fault-tolerant systems, control systems, energy systems, electrical machines, and electronics.

This book evaluates a number of serious technical challenges related to the integration of renewable energy sources into the power grid using the DIgSILENT PowerFactory power system simulation software package. It provides a fresh perspective on analyzing power systems according to renewable energy sources and how they affect power system performance in various situations. The book examines load flow, short-circuit, RMS simulation, power quality, and system reliability in the presence of renewable energy sources, and presents readers with the tools needed for modeling, simulation, and analysis for network planning. The book is a valuable resource for researchers, engineers, and students working to solve power system problems in the presence of renewable energy sources in power system operations and utilities. Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems. Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids,
battery management systems for microgrid applications, power system analysis for microgrids, and many others. The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices. The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.

Modeling of Photovoltaic Grid Connected Inverters Based on Nonlinear System Identification for Power Quality Analysis.

The proceedings of the International Conference on Information Engineering, Management and Security 2014 which happened at Christu Jyoti Institute of Technology.

The proceeding is a collection of research papers presented, at the 9th International Conference on Robotics, Vision, Signal Processing & Power Applications (ROVISIP 2016), by researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe to present their research results and development activities for oral or poster presentations. The topics of interest are as follows but are not limited to: • Robotics, Control, Mechatronics and Automation • Vision, Image, and Signal Processing • Artificial Intelligence and Computer Applications • Electronic Design and Applications • Telecommunication Systems and Applications • Power System and Industrial Applications • Engineering Education

This book starts with an overview of renewable energy technologies, smart grid technologies, energy storage systems, and covers the details of renewable energy integration with smart grid and the corresponding controls. This book provides better views on power scenario in developing countries. The requirement of the integration of smart grid along with the energy storage systems are deeply discussed to acknowledge the importance of sustainable development of smart city. The methodologies are made quite possible with the high-efficient power convertor topologies and intelligent control schemes. These control schemes are capable to provide better control with the help of machine intelligence techniques and artificial intelligence. The book also addresses the modern power convertor topologies and the corresponding control schemes for renewable energy integration with smart grid. The design and analysis of power converters that are used for grid integration of solar PV along with simulation and experimental results are illustrated. The protection aspects of the microgrid with power electronic configurations for wind energy systems are elucidated.

Today, the tide has turned so strongly in favour of renewables that for the first time since the dawn of the fossil fuel era over two hundred years ago renewable energy technologies have started attracting more investment globally than that in the fossil fuel-based technologies. This text provides a comprehensive and wide ranging introduction to various renewable energy technologies and their applications, such as solar, wind, biomass, biogas, wave, geothermal, tidal and small hydel. It provides a thorough understanding of the basic energy conversion processes taking place in various renewable energy-based equipment like heat engines, photovoltaics, wind turbines, windmills, wave machines, and so on. The text also deals with the impact of renewable energy sources on global warming and pollution. The book is intended for courses in Environmental Sciences,
Environmental/Electrical/Mechanical Engineering and Energy Studies at the undergraduate and postgraduate levels. It will also serve as a useful reference for scientists, technocrats and environmentalists.

This book features extensive coverage of all Distributed Energy Generation technologies, highlighting the technical, environmental and economic aspects of distributed resource integration, such as line loss reduction, protection, control, storage, power electronics, reliability improvement, and voltage profile optimization. It explains how electric power system planners, developers, operators, designers, regulators and policy makers can derive many benefits with increased penetration of distributed generation units into smart distribution networks. It further demonstrates how to best realize these benefits via skillful integration of distributed energy sources, based upon an understanding of the characteristics of loads and network configuration.

This volume contains revised and extended research articles written by prominent researchers participating in the international conference on Advances in Engineering Technologies and Physical Science was held in Hong Kong, 13-15 March, 2013. Topics covered include engineering physics, engineering mathematics, scientific computing, control theory, automation, artificial intelligence, electrical engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

This book presents a case study on a new approach for the optimum design of rooftop, grid-connected photovoltaic-system installation. The study includes two scenarios using different brands of commercially available PV modules and inverters. It investigates and compares several different rooftop grid-connected PV-system configurations taking into account PV modules and inverter specifications. The book also discusses the detailed dynamic MATLAB/Simulink model of the proposed rooftop grid-connected PV system, and uses this model to estimate the energy production capabilities, cost of energy (COE), simple payback time (SPBT) and greenhouse gas (GHG) emissions for each configuration. The book then presents a comprehensive small signal MATLAB/Simulink model for the DC-DC converter operated under continuous conduction mode (CCM). First, the buck converter is modeled using state-space average model and dynamic equations, depicting the converter, are derived. Then a detailed MATLAB/Simulink model utilizing SimElectronics® Toolbox is developed. Lastly, the robustness of the converter model is verified against input voltage variations and step load changes.

This book introduces innovative and interdisciplinary applications of advanced technologies. Featuring the papers from the 10th DAYS OF BHAAAS (Bosnian-Herzegovinian American Academy of Arts and Sciences) held in Jahorina, Bosnia and Herzegovina on June 21–24, 2018, it discusses a wide variety of engineering and scientific applications of the different techniques. Researchers from academic and industry present their work and ideas, techniques and applications in the field of power systems, mechanical engineering, computer modelling and simulations, civil engineering, robotics and biomedical engineering, information and communication technologies, computer science and applied mathematics.

This book comprises select proceedings of the International Conference on Emerging Technologies for Farming – Energy &
Environment – Water (ITsFEW 2018). The contents are divided into three parts viz., (i) Developments in Farming, (ii) Energy and Environment, and (iii) Water Conservation and Management. The book aims to provide timely solutions, using innovative and emerging technologies, to the global challenges in agriculture, energy, environment, and water management. Some of the topics covered in this book include remote sensing for smart farming, GIS, irrigation engineering, soil science and agronomy, smart grids, renewable energy, energy management systems, energy storage technologies, biological water treatment, industrial waste water treatment, watershed management and sustainability. Given the wide range of topics discussed, the book will be very useful for students, researchers and practitioners interested in agricultural and environmental engineering.

2014 International Conference on Artificial Intelligence and Software Engineering (AISE2014) aims to provide a forum for accessing to the most up-to-date and authoritative knowledge from both Artificial Intelligence and Software Engineering. AISE2014 features unique mixed topics of AI Algorithms, Data Mining, Knowledge-based Systems, Software Process and so on. The goal of this conference is to bring researchers, engineers, and students to the areas of Artificial Intelligence and Software Engineering to share experiences and original research contributions on those topics. Researchers and practitioners are invited to submit their contributions to AISE2014.

A Smart Grid delivers renewable energy as a main source of electricity from producers to consumers using two-way monitoring through Smart Meter technology that can remotely control consumer electricity use. This can help to storage excess energy; reduce costs, increase reliability and transparency, and make processes more efficiently. Smart Grids: Opportunities, Developments, and Trends discusses advances in Smart Grid in today’s dynamic and rapid growing global economical and technological environments. Current development in the field are systematically explored with an introduction, detailed discussion and an experimental demonstration. Each chapter also includes the future scope and ongoing research for each topic. Smart Grids: Opportunities, Developments, and Trends provides up to date knowledge, research results, and innovations in Smart Grids spanning design, implementation, analysis and evaluation of Smart Grid solutions to the challenging problems in all areas of power industry. Providing a solid foundation for graduate and postgraduate students, this thorough approach also makes Smart Grids: Opportunities, Developments, and Trends a useful resource and handbook for researchers and practitioners in Smart Grid research. It can also act as a guide to Smart Grids for industry professionals and engineers from different fields working with Smart Grids.

Power Quality Enhancement Using Custom Power Devices considers the structure, control and performance of series compensating DVR, the shunt DSTATCOM and the shunt with series UPQC for power quality improvement in electricity distribution. Also addressed are other power electronic devices for improving power quality in Solid State Transfer Switches and Fault Current Limiters. Applications for these technologies as they relate to compensating busses supplied by a weak line and for distributed generation connections in rural networks, are included. In depth treatment of inverters to achieve voltage support, voltage balancing, harmonic suppression and transient suppression in realistic network environments are also covered. New material on the potential for shunt and series compensation which emphasizes the
importance of control design has been introduced.


Anchor Academic Publishing

This book on power quality written by experts from industries and academics from various counties will be of great benefit to professionals, engineers and researchers. This book covers various aspects of power quality monitoring, analysis and power quality enhancement in transmission and distribution systems. Some of the key features of books are as follows: Wavelet and PCA to Power Quality Disturbance Classification applying a RBF Network; Power Quality Monitoring in a System with Distributed and Renewable Energy Sources; Signal Processing Application of Power Quality Monitoring; Pre-processing Tools and Intelligent Techniques for Power Quality Analysis; Single-Point Methods for Location of Distortion, Unbalance, Voltage Fluctuation and Dips Sources in a Power System; S-transform Based Novel Indices for Power Quality Disturbances; Load Balancing in a Three-Phase Network by Reactive Power Compensation; Compensation of Reactive Power and Sag Voltage using Superconducting Magnetic Energy Storage; Optimal Location and Control of Flexible Three Phase Shunt FACTS to Enhance Power Quality in Unbalanced Electrical Network; Performance of Modification of a Three Phase Dynamic Voltage Restorer (DVR) for Voltage Quality Improvement in Distribution System; Voltage Sag Mitigation by Network Reconfiguration; Intelligent Techniques for Power Quality Enhancement in Distribution Systems.

This book describes an original improvement in power quality of photovoltaic generation systems obtained by the use of a multilevel inverter implemented with level doubling network (LDN). Modulation principles and harmonic analysis of output voltages are proposed and introduced in detail for both single and three-phase LDN configurations. The analysis is then extended to dc-link current and voltage, with emphasis to low-frequency harmonics and switching frequency ripple. This work represents the first comprehensive implementation of maximum power point tracking (MPPT) schemes using the ripple correlation control (RCC) algorithm in the presence of multiple ripple harmonics, such as in the case of multilevel inverters. Numerical simulations and experimental tests are carefully reported here, together with practical insights into the design of dc-link capacitors.

This book deals with several selected aspects of electric power quality issues typically faced during grid integration processes of contemporary renewable energy sources. In subsequent chapters of this book the reader will be familiarized with the issues related to voltage and current harmonics and inter-harmonics generation and elimination, harmonic emission of switch-mode rectifiers, reactive power flow control in power system with non-linear loads, modeling and simulation of power quality issues in power grid, advanced algorithms used for estimating harmonic components, and new methods of measurement and analysis of real time accessible power quality related data.

This volume brings together contributions dealing with renewable energies and power quality, presented over five years of the International Conference on Renewable Energy and Power Quality (ICREPQ). It contains a selection of the best papers and original contributions presenting state-of-the-art research in the field of renewable energy sources. Including some of the leading authorities in their areas of expertise, the contributors to the volume are drawn from across the globe, with about 300 authors from 60 different countries.

The introductory chapter to this book is like traveling in a time machine into past, present, and future of electric power conversion. Archeological discoveries are being transformed into the discoveries of the future. The book is an incursion to electric power conversion through electromechanical power conversion, static power conversion, and applications in the field. Each of the above-mentioned sections analyzes the knowledge gained using the experimental results of valuable research projects. Novice readers will learn how energy is converted adequately and adapted to different consumers. Advanced readers will discover different kinds of modern solutions and tendencies
in the field of electric power conversion.

The utilization of renewable energy sources such as wind energy, or solar energy, among others, is currently of greater interest. Nevertheless, since their availability is arbitrary and unstable this can lead to frequency variation, to grid instability and to a total or partial loss of load power supply, being not appropriate sources to be directly connected to the main utility grid. Additionally, the presence of a static converter as output interface of the generating plants introduces voltage and current harmonics into the electrical system that negatively affect system power quality. By integrating distributed power generation systems closed to the loads in the electric grid, we can eliminate the need to transfer energy over long distances through the electric grid. In this book the reader will be introduced to different power generation and distribution systems with an analysis of some types of existing disturbances and a study of different industrial applications such as battery charges.

Annotation This book details the theoretical and practical background to low voltage conducted disturbances including harmonics, voltage fluctuation/flicker and asymmetrical voltages.

The solar Photovoltaic (PV) technology is gaining significant levels and is going to contribute a major share of total generated electricity in the coming years. PV technology is becoming a promising alternative source for fossil fuels. However, Power Quality (PQ) is the major concern that occurs between the grid and an end user. Any typical electrical distribution system exhibits a passive characteristic with respect to power flows when power flows from a substation to load. However, with inclusion of solar PV generators, this behaviour tends to be changed. The main characteristics related to PQ, such as voltage level, frequency, power factor and Total Harmonic Distortion (THD), may be affected. This book presents the analysis of PQ with the integration of grid-connected PV systems as distributed generation. The role of Maximum Power Point Tracking (MPPT) technique is investigated through implementing few basic MPPT techniques. Using the Matlab-simulation platform, the analysis of PQ is demonstrated. This analysis is based on real measurements of THD, Voltage levels, Current levels, DC voltage levels, real power and reactive power flows.

Excessive utilization of power electronic devices and the increasing integration of renewable energy resources with their inverter-based interfaces into distribution systems have brought different power quality problems in these systems. There is no doubt that the transition from traditional centralized power systems to future decentralized smart grid necessities is paying much attention to power quality knowledge to realize better system reliability and performance to be ready for the big change in the coming years of accommodating thousands of decentralized generation units. This book aims to present harmonic modeling, analysis, and mitigation techniques for modern power systems. It is a tool for the practicing engineers of electrical power systems that are concerned with the power system harmonics. Likewise, it is a key resource for academics and researchers who have some background in electrical power systems.

This book comprises ten articles covering different aspects of power quality issues in microgrids and distributed
generation (DG) systems, including 1) Detection and estimation of power quality; 2) Modeling; 3) Harmonic control for DG systems and microgrids; 4) Stability improvements for microgrids. Different power quality phenomena and solution were studied in the included papers, such as harmonics, resonance, frequency deviation, voltage sag, and fluctuation. From a network point of view, some papers studied the harmonic and stability issues in standalone microgrids which are more likely to cause power quality problems. Other papers discussed the power quality problems in microgrids which are weakly interconnected with the main distribution grid. In view of the published papers, there is a trend that increasingly advanced modeling, analysis, and control schemes were applied in the studies. Moreover, the latest works focus not only on single-unit problems but also multiple units or network issues. Although some of the hot topics are not included, this book covers multiple aspects of the current power quality research frontier, and represents a particularly useful reference book for frontier researchers in this field.

As the need for proficient power resources continues to grow, it is becoming increasingly important to implement new strategies and technologies in energy distribution to meet consumption needs. The employment of smart grid networks assists in the efficient allocation of energy resources. Smart Grid as a Solution for Renewable and Efficient Energy features emergent research and trends in energy consumption and management, as well as communication techniques utilized to monitor power transmission and usage. Emphasizing developments and challenges occurring in the field, this book is a critical resource for researchers and students concerned with signal processing, power demand management, energy storage procedures, and control techniques within smart grid networks.

Copyright: 1cbe21bcc979d410f4e11474825cc32a